

Computing Sciences Atomic and Molecular Theory Group

Interaction Between Virtual States and Resonance States in Electron-Polyatomic Collisions

Wim Vanroose, Bill McCurdy and Tom Rescigno Funding: Department of Energy, Office Basic Energy Sciences

Joint Japan-US workshop on Resonances December 18-20, 2002

Figure 1: High precision electron- $C0_2$ scattering experiment by Allan J. Phys B **35** L387 (2002)

Figure 2: cartoon of different configurations of CO_2^-

Is the $C0_2^-$ state a resonance or virtual state STRETCH Equilibrium Re(k) Re(k) Im(k) Negative Ion Re(k) Re(k) BEND Im(k) Im(k)

Figure 3: Interpretation of fixed-body calculations by Rescigno $et\ al$ in the complex k-plane (Phys Rev A **65** 032716 (2002))

Dipole potential couples all partial waves

$$(T + V_{l,l'}(r) - E) \psi_{l'}(r) = 0$$
(1)

$$V_{l,l'}(r \to \infty) = \text{multipole terms}$$
 (2)

Dipole potential couples all partial waves

$$(T + V_{l,l'}(r) - E) \psi_{l'}(r) = 0$$
(1)

$$V_{l,l'}(r \to \infty) = \text{multipole terms}$$
 (2)

$$\begin{pmatrix}
-\frac{1}{2}\frac{d^2}{dr^2} + V_0(r) - \frac{k^2}{2} & C(r) \\
C(r) & -\frac{1}{2}\frac{d^2}{dr^2} + V_1(r) - \frac{k^2}{2}
\end{pmatrix}
\begin{pmatrix}
\psi_0 \\
\psi_1
\end{pmatrix} = 0 \quad (3)$$

where

$$V_0(r \to \infty) = 0 \tag{4}$$

$$V_1(r \to \infty) = \frac{l(l+1)}{2r^2} \tag{5}$$

$$C(r \to \infty) = \frac{d}{r^2} \tag{6}$$

Figure 4: Model for the potentials. Leads to an analytic expression for the $S{\operatorname{\mathsf{-matrix}}}$

Figure 5: Trajectories of the S-matrix poles as we stretch the molecule

Figure 6: Trajectories of the S-matrix poles as we stretch the molecule

Figure 7: Trajectories of the S-matrix poles as we stretch the molecule

Figure 8: R-matrix siegert calculation for CO_2^- by L. A. Morgan (PRL **80** 1873 (1998))

Figure 9: HBr S-matrix poles in the complex k-plane as a function of the stretch. R matrix Siegert calculations by Fandreyer and Burke (J Phys B 29 (1996) 339-343)

Conclusions

- Both the virtual state and the resonance connect with the CO_2^- bound state, depending on the path.
- New physics in the switch from diatomic to polyatomic molecules
 - * Topology for two vibrational degrees of freedom suggests a Berry phase.

More info?

slides \rightarrow http://www.lbl.gov/CS/amo_theory/paper \rightarrow Vanroose, McCurdy and Rescigno, PRA **66** 032720 (2002)